P6.8-5) A 35-lb non-uniform disk of radius 0.5 ft rests on a horizontal surface. The disk is released from rest in the position shown in the figure. If the disk's radius of gyration about its mass center G is 0.2 ft and the coefficient of static and kinetic friction between the disk and surface are 0.4 and 0.2, respectively, determine the angular acceleration at the instant it is released.

Given:

Find:

Solution:

Draw a free-body diagram of the disk.

Calculate the disk's mass moment of inertia.

Calculate the mass moment with respect to the center of mass.

$I_G =$	

Calculate the mass moment with respect to point A.

7					
	=				
1 A	_				

Use the disk's equation of motion to solve
for the angular acceleration.

To begin with, assume no slip.

C	χ	=										

Verify the no slip assumption	Verif	fv the n	ails o	assum	ption.
-------------------------------	-------	----------	--------	-------	--------

Calculate the *y*-component of the mass center linear acceleration assuming no slip.

<u>Hint:</u> If you go from A to G and set the y-component of \mathbf{a}_A equal to zero (which is true for both no slip and slip), it is a more general solution.

Calculate the normal force as a function of the angular acceleration.

$$N(\alpha) =$$

Calculate the normal force for no slip.

Calculate the maximum static friction force for no slip.

$$F_{fs max} =$$

Solve for the static friction force for no slip.

$$F_{fs} =$$

Does the disk slip?

Yes No

Why?

Use the disk's equation of motion to calculate the angular acceleration (with slip).